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ABSTRACT: We model a coaxial load using an artificial neural network (ANN) to improve a
coaxial line-reflect-match (LRM) calibration of an automatic network analyzer. The ANN is
trained with measurement data obtained from a thru-reflect-line (TRL) calibration. The
accuracy of the LRM calibration using the ANN-modeled load compares favorably to a
benchmark multiline TRL calibration, with an average worst-case scattering-parameter
error bound of 0.024 over an 18-GHz bandwidth. © 2001 John Wiley & Sons, Inc. Int J RF and

Microwave CAE 11: 33-37, 2001.
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I. INTRODUCTION

In this paper, we implement a technique involving
artificial neural networks (ANNs) to model the
load of a coaxial line-reflect-match (LRM) cali-
bration [1] and improve its accuracy over the
equivalent circuit model reported earlier [2]. This
approach allows us to develop a compact descrip-
tion of the standard without having to formulate
a detailed physical model. ANN descriptions also
have a number of advantages over using cali-
brated measurement data files, as shown in ref. 3.
Namely, they are more compact and are less
susceptible to noise inherent in measured data,
and they can model the standards more accu-
rately at interpolated frequencies, especially for
sparse data sets.

The most accurate calibration for coaxial cir-
cuits is the multiline thru-reflect-line (TRL) cali-
bration [4], which offers high bandwidth and accu-
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racy through the use of multiple transmission line
standards. The calibration also measures the
propagation constant of the line standards so that
the reference impedance can be set accurately.
However, a set of coaxial lines, some relatively
long, is required to obtain a wide-band measure-
ment. Coaxial airlines also require considerable
care to ensure a good connection without damag-
ing the standard. Furthermore, a set of lines can
be costly.

In contrast, the LRM calibration, which re-
quires only a thru connection, a coaxial load, and
a reflection, overcomes these limitations. Here,
the reference impedance is set to that of a stan-
dard load. The impedance of many coaxial loads,
however, is nonideal, which can lead to significant
error in LRM calibrations.

There are two approaches we can take to char-
acterize an imperfect load. One is to characterize
it in terms of its reflection coefficient [5], which
requires access to a full multiline TRL calibration
set. Alternatively, we can postulate a physical
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model of the load and apply a minimal calibration
sufficient to determine the model coefficients [1].
Jargon et al. [2] applied this notion to coaxial
lines, employing the measurement of the load
after a single-line TRL calibration to fit the pa-
rameters of an equivalent circuit model. This
provided a means for obtaining an accurate wide-
band LRM calibration with a compact coaxial
standard set consisting of a reflection, a match
standard, and a line of short length.

Although the equivalent circuit model used in
ref. 2 was effective, there were a number of
difficulties with it. First, the model was specifi-
cally tailored for the load used, so considerable
time was required to develop an adequate model.
The load was approximated by the impedance
R + gw? + joL, preceded by a lossless line of
characteristic impedance Z;, length /, and effec-
tive permittivity & ;. The value of R was deter-
mined by measuring the direct current resistance
of the load. Z, was chosen to be 50 (), and ¢_
was assumed to be 1. Then, L, ¢, and [ were
determined by optimizing the model. Another
disadvantage of this model is that it is not guaran-
teed to work for other loads. A completely dif-
ferent impedance might be required to model
other loads correctly.

In an attempt to improve the accuracy of the
LRM calibration, we used a single-line TRL cali-
bration to train an ANN model of the load. The
following sections describe our implementation of
ANNSs and assess the accuracy of the LRM cali-
bration using the ANN-modeled load, comparing
it to the equivalent circuit model and measured
data.

Il. ARTIFICIAL NEURAL NETWORKS

The ANN architecture used in this work is a
feed-forward, three-layer perceptron structure
(MLP3) consisting of an input layer, a hidden
layer, and an output layer. The hidden layer al-
lows complex models of input-output relation-
ships. The mapping of these relationships is given
by ref. 6

ng[wzg(wl .X)]a

where X is the input vector, Y is the output
vector, and W, and W, are the weight matrices
between the input and hidden layers and between

the hidden and output layers, respectively. The
function g(u) is a nonlinear sigmoidal activation
function given by

1

80 = T oS0

where u is the input to a hidden neuron. An
MLP3 with one hidden sigmoidal layer is able to
model almost any physical function accurately
provided that a sufficient number of hidden neu-
rons are available [7].

ANNSs learn relationships among sets of input-
output data which are characteristic of the device
or system under consideration. After the input
vectors are presented to the input neurons and
output vectors are computed, the ANN outputs
are compared to the desired outputs and errors
are calculated. Error derivatives are then calcu-
lated and summed for each weight until all of the
training sets have been presented to the network.
The error derivatives are used to update the
weights for the neurons, and training continues
until the errors reach prescribed values.

Although multiple inputs and outputs are pos-
sible with this ANN architecture, we made use of
one input (frequency) and two outputs (the real
and imaginary components) for each measured
impedance parameter. In this study, we utilized
software developed by Zhang et al. [8] to con-
struct our ANN models.

ill. LOAD MODELING

We used a set of commercially available GPC-7
artifacts for these experiments. The artifacts con-
sisted of 2.25-, 10-, and 30-cm airlines, a short
circuit, and a nominally 50 ) coaxial load. We
assumed that our sexless GPC-7 connectors mated
perfectly with our line, allowing a direct connec-
tion between the two ports to serve as a thru line.

In Figure 1 we plot measurements of the real
and imaginary parts of the load impedance. The
impedance was determined by a TRL calibration
using only the thru connection and the 2.25-cm
line, and applying an impedance transformation
to the calibration, which yielded the measured
S-parameters referenced to 50 ). The character-
istic impedance of the line was determined from
its capacitance and propagation constants, allow-
ing the reference impedance of the TRL calibra-
tion to be accurately set to 50 Q [9]. Use of only a
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Figure 1. Real and imaginary parts of the measured
and modeled impedance of the load.

single line explains the inaccuracy at multiples of
6.67 GHz. The figures show that the load deviates
significantly from 50 Q.

To account for the nonidealities, we developed
an ANN model for the load using 15 hidden
neurons and 181 measured points. We trained
our ANN model with data taken from the single-
line TRL calibration to illustrate that loads, or
for that matter almost any artifact, can be mod-
eled using only a simple set of calibration stan-
dards rather than a large set of expensive airlines.
Figure 1 shows that the real and imaginary parts
of the ANN-modeled load correspond closely to
the measured values and that the model did avoid
the spikes present at multiples of 6.67 GHz. Also
plotted in Figure 1 are the real and imaginary
parts of the load as determined by the equivalent
circuit model of ref. 2. Not only does the ANN
model match the measured values closer than the
circuit model, but it was also developed in a small
fraction of the time needed to develop and opti-
mize the circuit model.
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IV. CALIBRATION COMPARISON

First, two consecutive multiline TRL calibrations,
using all three airlines, were compared to assess
the limitations on calibration repeatability caused
by contact error and instrument drift. The tech-
nique of ref. 10 was used to determine an upper
bound on this repeatability error. Briefly, the
comparison determines the upper bound for [S};
— §;;| for measurements on any passive device,
where §;; are the scattering parameters of a de-
vice measured with respect to the first calibration
and S;; are the scattering parameters measured
with respect to the second calibration. The bound
i1s obtained from a linearization, which assumes
that the two calibrations are similar to the first
order. The result, plotted as a solid curve in
Figure 2, roughly indicates the minimum devia-
tion between any pair of calibrations. The average
of the worst-case error bounds for repeatability
was 0.013.

We also compared the single-line TRL calibra-
tion, which was used to develop both the ANN
and equivalent-circuit models, to the multiline
TRL calibration. The result is plotted in Figure 2.
Since we only used the 2.25-cm line standard, our
calibration accuracy is poor near multiples of 6.67
GHz, where the difference in line lengths corre-
sponds to a multiple of half a wavelength [4].
Otherwise, the single-line TRL calibration is just
as accurate as the multiline TRL calibration at
most frequencies.

We assessed the accuracy of the LRM calibra-
tions by comparing them to the 50 { multiline
TRL calibration. Figure 2 shows the maximum
possible difference [S;; — S;;| where S, corre-
sponds to the simple LRM calibration (load as-
sumed to be ideal), and S;; corresponds to the
multiline TRL calibration. Here, the difference is
large since the reference impedance of the LRM
calibration, which is equal to the impedance of
the nonideal load, deviates significantly from
50 Q.

To see how accurate the best LRM calibration
was, we compared the multiline TRL calibration
to the LRM with a fully characterized load, which
involved calibrating the load with the benchmark
multiline TRL calibration and using the cali-
brated measurement data file to define the load.
This comparison is once again shown in Figure 2.
The average of the worst-case error bounds for
this calibration was 0.016.

Figure 2 also shows the worst-case error bounds
for the LRM calibrations based on both the ANN
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Figure 2. Worst-case error bounds between measurements of passive devices from LRM
and TRL calibrations and the multiline TRL calibrations.

and equivalent circuit models. The average of the
worst-case error bounds for the ANN-modeled
LRM calibration was 0.024, while the average for
the circuit-modeled LRM was 0.034.

V. CONCLUSIONS

The use of ANNs to model coaxial LRM load
standards compares favorably to a benchmark
multiline TRL calibration, with an average worst-
case scattering-parameter error bound of 0.024.
In our ANN model, we made use of 15 neurons in
the hidden layer of an MLP3 architecture.

In the case of LRM calibrations, we have shown
that ANN models offer advantages over equiva-
lent circuit models since they do not require
detailed physical models. Our ANN model re-
quired far less development time than our equiva-
lent circuit model and still managed to achieve
higher accuracy. ANN model descriptions are also
preferred over calibrated measurement data files
since they are much more compact in size. Addi-
tionally, loads, or for that matter almost any
artifact, can be modeled using only a simple set of
calibration standards rather than being fully char-
acterized with a large set of expensive airlines.
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